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Two-dimensional turbulence in the inverse cascade range

Victor Yakhot
Department of Aerospace and Mechanical Engineering, Boston University, Boston, Massachusetts 02215

~Received 22 April 1999!

Numerical and physical experiments on forced two-dimensional Navier-Stokes equations show that trans-
verse velocity differences are described by ‘‘normal’’ Kolmogorov scaling^(Dv)2n&}r 2n/3 and obey Gaussian
statistics. Since nontrivial scaling is a sign of the strong nonlinearity of the problem, these two results seem to
contradict each other. A theory explaining these observations is presented in this paper. The derived self-
consistent expression for the pressure gradient contributions leads to the conclusion that small-scale transverse
velocity differences are governed by a linear Langevin-like equation, stirred by a nonlocal, universal, solution-
dependent Gaussian random force. This explains the experimentally observed Gaussian statistics of transverse
velocity differences and their Kolmogorov scaling. The solution for the PDF of longitudinal velocity differ-
ences is based on the numerical smallness of the energy flux in two-dimensional turbulence. The theory makes
a few quantitative predictions that can be tested experimentally.@S1063-651X~99!13011-3#

PACS number~s!: 47.27.2i
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I. INTRODUCTION

Theoretical prediction of two inertial ranges, as a con
quence of both energy and enstrophy conservation laws
the two-dimensional Euler equations, was and still is one
the most remarkable achievements of statistical hydro
namics @1#. A direct, and the most important, outcome
these conservation laws is the fact that if a fluid is stirred
a random ~or nonrandom! forcing, acting on a scalel f
51/kf , the energy produced is spent on creation of a lar
scale (l . l f) flow which cannot be dissipated in the limit o
a large Reynolds number asn→0. This means that the diss
pation terms are irrelevant in the inverse cascade ra
Since the dissipation contributions are one of the most d
cult obstacles on the road toward turbulence theory~see be-
low!, one can hope that in two dimensions the situation
greatly simplified. This hope is supported by recent num
cal and physical experiments showing that as long as
integral scaleLi}t3/2 is much smaller than the size of th
system, the velocity field at scalesLi@ l @ l f is a stationary
close-to-Gaussian process characterized by the struc
functions

Sn5„u~x1r !2u~x!…n[~Du!n}~Pr !n/3, ~1!

where the pumping rateP is defined below@2–4#. Moreover,
both numerical and physical experiments were not accu
enough to measure

s2n115
S2n11

S2
~2n11!/2!1, ~2!

which were too small. This means that the observed pr
ability density P(Du) was very close to being symmetric
This experimental fact differs from the outcome of the me
surements in three dimensions, wheresn’s are very large
when n is not small. Thus the absence of strong~if any!
intermittency in two-dimensional turbulence, and the pro
imity of the statistics of the velocity field to Gaussian, mak
the problem seem tractable.
PRE 601063-651X/99/60~5!/5544~8!/$15.00
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The equations of motion are~densityr[1!

] tv i1v j] jv i52] i p1n¹2v i1 f i . ~3!

and

] iv i50, ~4!

wheref is a forcing function mimicking the large-scale tu
bulence production mechanism and, in a statistically ste
state, the mean pumping rateP5f•v. In the inverse cascad
range the dissipation terms in Eq.~3! will be irrelevant. Ne-
glecting this and multiplying Eq.~3! by v i , we readily obtain

E5 1
2 v25Pt. ~5!

Thus in this case the energy grows linearly with time.
In this paper we define the force correlation function a

^ f i~k! f j~k8!&}PS d i j 2
kikj

k2 D d~k2kf !

k
d~k1k8!d~ t2t8!,

~6!

so that

~ f ~x1r !2 f ~r !!2}P„12cos~kfr !…. ~7!

It will be clear below that the forcing term enters the equ
tions for the probability density of velocity differences e
clusively through expression~7!, and in the limitkfr !1 its
contribution isO„(kfr )2

… which is a well-known fact. In the
energy cascading inertial range we are interested in
work, kfr @1, and the oscillating contribution can be n
5544 © 1999 The American Physical Society
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PRE 60 5545TWO-DIMENSIONAL TURBULENCE IN THE INVERSE . . .
glected leading to the disappearence of the forcing s
from equation for the pair distribution function~PDF!. Thus
the general expression for the structure functions is

Sn~r !}~Pr !n/3S r

Li~ t ! D
dn

, ~8!

where the exponentsdn denote possible deviations from th
Kolmogorov scaling. If a statistically steady state exist in t
limit Li@ l @ l f , then alldn50 sinceLi}t3/2. This would be
proof of ‘‘normal’’ ~Kolmogorov! scaling in the inverse cas
cade range, provided one can show that the PDFP(Du) in
the inertial range is independent of its counterpart in
interval l' l f . This is the subject of the present paper, wh
is organized as follows. In Sec. II the equations for the g
erating functions are introduced. Section III is devoted t
short analysis of the Polyakov theory of Burgers turbulen
some aspects of which are used in this paper. Some phy
considerations, which are basic for the developing theo
are presented in Sec. IV. In Secs. V and VI the equations
the transverse and longitudinal probability density functio
are derived and solved. A summary and discussion are
sented in Sec. VII.

Now we would like to recall some well-known propertie
of velocity correlation functions in incompressible fluid
needed below. Consider two pointsx and x8, and definer
5x2x8. Assuming that thex axis is parallel to the displace
ment vectorr , one can find that, in the two-dimensional flo
d52 for the separationr in the inertial range@5–7#,

1

r d11 ] r r
d11S35

12

d
P, ~9!

where the pumping powerP5O(1) is a constant. In wha
follows we will often setP51 and restore correct dimen
sionality at the end of calculations. Integrating Eq.~9! gives

S35~Du!3[„u~x8!2u~x!…3[
12

d~d12!
Pr ~10!

and

S3
t 5~Dv !3[„v~x8!2v~x!…350, ~11!

whereu andv are the components of velocity field parall
and perpendicular to thex axis ~vectorr !. Relations~9!–~11!
resulting from equations of motion~3! are dynamic proper-
ties of the velocity field. The kinematics also gives som
thing interesting:

1

r d22

d

dr
r d21S25~d21!S2

t [~d21!~Dv !2, ~12!

and in two dimensions we have

S3t[Du~Dv !25
r

3

d

dr
S3 . ~13!
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II. EQUATION FOR GENERATING FUNCTION

We consider theN-point generating function

Z5^el i•v„xi …&, ~14!

where the vectorxi define the positions of the points denote
1< i<N, and summation over the positions of the pointsxj
is assumed. Using the incompressibility condition, the eq
tion for Z can be written

]Z

]t
1

]2Z

]l i ,m]xi ,m
5I f1I p , ~15!

with

I f5(
j

^lj• f ~xj !e
l i u~xi !&, ~16!

I p52(
j

l j K el i u~xi !
]p~xj !

]xj
L . ~17!

The dissipation contributions have been neglected here
irrelevant.

In what follows we will be mainly interested in the prob
ability density function of the two-point velocity difference
which is obtained from Eqs.~14!–~17!, setting l11l250
~see Ref.@8#, and the theory developed below!, so that

Z5^exp~l•U!&, ~18!

where

U5u~x8!2u~x![Du. ~19!

It is easy to see that in the incompressible case the equa
for generating the function of velocity differences~18! is

]Z

]t
1

]2Z

]lm]r m
5 I f1I p,

with

I f5^l–Dfel–Dm&

and

I p52l K el–DuS ]p~x2!

]x2
2

]p~x1!

]x1
D L .

The most interesting feature of these equations is the
that the advective contributions are represented there
closed form. To completely close the problem the express
for I p is needed. The moments of the two-point veloc
differences which in homogeneous and isotropic turbule
can depend only on the absolute values of two vectors@ve-
locity differencev~x8!2v~x! and displacementr[x82x# and
the angleu between them withu5p/2 andu50 correspond
to transverse and longitudinal structure functions, resp
tively. It is easy to show@5,6# that the general form of the
second-order structure function in the inertial range is
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5546 PRE 60VICTOR YAKHOT
S2~r ,u!5
21j2

2
DLL~r !S 12

j2

21j2
cos2~u! D , ~20!

with DLL(r )5(„u(x)2u(x1r )…2). A more involved rela-
tion can be written for the fourth-order moment:

S4~r ,u!5DLLLL~r !cos4~u!23DLLNN~r !sin2~2u!

1DNNNN~r !sin2~u!, ~21!

where DLLNN5(„v(x)2v(x1r )…2„u(x)2u(x1r )…2), and
v andu are the components of the velocity field perpendic
lar and parallel to thex axis, respectively. In general, in th
limit cos(u)[s→61, corresponding to moments of the lo
gitudinal velocity differencesSn(r ,s)→Sn(r )cosn(u). This
means that in this limitZ(l,r ,s)→Z(ls,r )[Z(lx ,r ). The
generating function can depend only on three variables:

h15r , h25
l•r

r
[l cos~u!, h35Al22h2

2.

In these variables,

Zt1F]h1
]h2

1
d21

r
]h2

1
h3

r
]h2

]h3

1
~22d!h2

rh3
]h3

2
h2

r
]h3

2 GZ5I f1I p , ~22!

where

I p5l i^„]2,i p~2!2]1,i p~1!…el•U& ~23!

and

I f5~h2
21h3

2!P„12cos~kfr !…Z, ~24!

where, to simplify notation we set] i ,a[]/]x,a and v( i )
[v„xi…. In two dimensions, the equation for the generat
function becomes

F]h1
]h2

1
1

r
]h2

1
h3

r

]2

]h2]h3
2

h2

r

]2

]h3
22P~h2

21h3
2!GZ

5I p . ~25!

The generating function can be written as

Z5^eh2Du1h3Dv&, ~26!

so that any correlation function

^~Du!n~Dv !m&5
]n

]h2
n

]m

]h3
m Z~h25h350!. ~27!

Neglecting the pressure termI p and differentiating Eq.~25!
once overh2 we immediately obtain (d52)

d

dr
rS25S2

t . ~28!

A second differentiation~again neglectingI p! gives
-

1

r

d

dr
rS32

2

r
S3t22P50. ~29!

Combined with Eq.~13!, this expression gives

1

r 3

d

dr
r 3S326P50, ~30!

which is nothing but the Kolmogorov relation, derived
two dimensions without contributions from the pressu
terms. It follows from Eq.~25! that it is reasonable to look
for a scaling solutionZ(h2 ,h3 ,r )5Z(X2 ,X3), where Xi
5h i r

1/3.

III. POLYAKOV’S THEORY OF BURGERS TURBULENCE

The dissipation-generated contributions areO(n¹2uiuj )
Þ0 in the limit n→0. This is a consequence of the ultravi
let singularity¹2ui(x)uj (x1r )→` whenr→0, making the
theory~the closure problem! extremely difficult. The expres-
sion for this ‘‘dissipation anomaly,’’ part of the equation fo
the generating function, was developed by Polyakov for
problem of the one-dimensional Burgers equation stirred
a random force@8#. The theory of two-dimensional turbu
lence is free from the troubles coming from the ultravio
~dissipation! singularities. Still, here we review some of th
aspects of Polyakov’s theory which we believe are of gene
interest and which will be most helpful below. Polyako
considered a one-dimensional problem@8#

ut1uux5 f 1nuxx , ~31!

where the random force is defined by the correlation funct

f ~x,t ! f ~x1r ,t8!5k~r !d~ t2t8!. ~32!

The equation for a generating function, analogous to
~14!, is written readily:

Zt1(
j

l j

]

]l j

1

l j

]Z

]xj
5k~r i j !l il jZ1D, ~33!

where

D5nl j^u9~xj ,t !elku~xk ,t !&. ~34!

In the limit r i j →0 the force correlation functionk(r i j )
5O(12r i j

2 ), which imposes scaling properties on the velo
ity correlation functions. In general, the generating functi
depends on both velocity differencesU25Du5u(xi)
2u(xj ) and sumsU15u(xi)1u(xj ) making the problem
very difficult. Defining Galilean invariance as independen
of the correlation functions on ‘‘non-universal’’ single-poin
urms

2 5u2, Polyakov assumed that if alluU2u!urms thenU2

andU1 are statistically independent andSl i50. In this case
~see Ref.@8#!, introducing m5l22l1 and the two-point
generating function

Z~m!5~emDu! ~35!

the equation forZ reads, in a steady state,
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S ]

]m
2

2

m D ]

]r
Z52r 2m2Z1D, ~36!

where

D5mn~„u9~x1r !2u9~x!…emDu!. ~37!

It is clear that theO(r 2) forcing term imposes the scalin
variablej5mr andZ5F(mr ), whereF is a solution of the
following equation:

jF92F81j2F5D ~38!

The problem is in evaluation of the dissipation contributi
D.

At first glance one can attempt to neglectD and solve the
resulting equation. This is not so simple, however. T
Laplace transform of Eq.~38! gives an equation for the prob
ability densityP5(1/r )F(U/r )[(1/r )F(X):

F91X2F813XF50.

Introducing

F5expS 2
X3

6 DC ~39!

gives

C95S X4

4
22XDC, ~40!

which is the stationary Schro¨dinger equation for a particle in
a potentialU(X)5X4/422X, not having any positive every
where solutionsP(X). This difficulty can be understood
readily since Eq.~40! corresponds to a particle having th
ground-state energyE050. It can be shown that only whe
the linear inX contribution to potentialU(X) is modified, so
that

U~X!5
X4

4
2

3

2
X,

the equation

F9~X!5U~X!F~X!

does give an everywhere positive solutionP(X).
The positivity of the probability density is a severe co

straint on a possible solution of the equation of motion. T
is where the dissipation contributionD comes to the rescue
Polyakov proposed a self-consistent conjecture about
structure of the dissipation term

D5S b

m
1aDZ ~41!

modifying the potential in the Schro¨dinger equation with the
coefficients b and a chosen to produce the zero-ener
ground state corresponding to a positive PDF. According
Ref. @8# this expression is the only one satisfying the G
ilean invariance of the small-scale dynamics. The fact t
the one-dimensional or multidimensional advection contri
e

t

e

o
-
t
-

tions to the equation for the generating function do not le
to positive solutions for the PDF is a general phenomen
~see below!. The importance of Polyakov’s theory is, amon
other things, in realization that the dynamic closures for
remaining terms must remove this problem. This dram
cally narrows the allowed classes of closures. Thus, the
pressions forD or the pressure terms~see below!, combined
with advective contributions to equation forZ, can be correct
if and only if they lead to positive solutions for the PDF’s
the entire range whereuDuu!urms and r !Li .

IV. PHYSICAL CONSIDERATIONS

The problem of two-dimensional turbulence is simplifie
by the fact that the dissipation contributions are irrelevant
the scalesl @ l f we are interested in. Moreover, sinceurms
grows with time, the statistically steady small-scale veloc
differencesU25Du with r !L(t) must be decoupled from
U1 in Eq. ~25!. This means that the terms

~Du!n~Du!m ~42!

can enter the equation forP(Du,r ), while the ones involving

~Du!n~Dv !mU1
p ~43!

cannot. In principle, it can happen that theU2U1 correlation
functions can sum up into something time independe
However, at present we discard this bizarre possibility.

Next, the pressure gradients

¹p~x1r !2¹p~x! ~44!

appearing in Eqs.~22!–~24! for Z involve integrals over en-
tire space. It is clear that, if a steady state exists, the la
scale contribution to the pressure integrals, depending oL
5L(t), cannot contribute to the small-scale steady-state
namics described by Eq.~25!. That is why the pressure con
tributions toI p Eq. ~23! must depend exclusively on the loc
scale r. This leads us to an assumption that the press
gradients in Eq.~23! are local in the sense that they can
expressed in terms of the velocity field at the pointsx and
x1r . The application of these considerations are presen
below.

The theory of Burgers turbulence dealt with the ‘‘unive
sal’’ part of the dynamics, i.e., with the moments of veloc
differenceSn with n,1. The theory of two-dimensional tur
bulence that we are interested in must produce the mom
with n,`, and that is why the algebtaic expressions for t
PDF’s, characteristic of Burgers dynamics, are irrelevant
addition, we expect the small-scale dynamics in two dim
sional to be independent of the forcing function. This mak
this problem very different.

V. TRANSVERSE STRUCTURE FUNCTIONS

Unlike the probability density function for the longitud
nal velocity differencesP(Du,r ), the transverse velocity dif-
ference probability density is symmetric, i.e.,P(Dv,r )5
P(2Dv,r ). We are interested in Eq.~25! in the limit h2
→0. Let us first discuss some of the general properties
incompressible turbulence. Consider the forcing function
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f ~x,y!5„f x~x,y!,0….

In this case Eq.~25! is

F ]h1
]h2

1
1

r
]h2

1
h3

r

]2

]h2
]h3

2
h2

r

]2

]h3
22Ph2

2GZ5I p .

~45!

Then settingh250 removes all information about the forc
ing function from the equation of motion. Based on our ge
eral intuition and numerical data, we know that two flow
stirred by a one or two-component~statistically isotropic!
forcing function are identical at the scalesl @ l f , provided
the total fluxes generated by these forcing functions
equal. This happens due to pressure terms

Dp52¹ i¹ jv iv j

effectively mixing various components of the velocity fiel
This universality, i.e., independence of the small-scale tur
lence on the symmetries of the forcing, enables us to write
expression for theI p contribution to Eq.~25!.

According to considerations presented in a previous s
tion, the pressure gradients in Eq.~25! are local and their
dynamic role is in mixing various components of veloc
field. Thus the only contribution toI p , not vanishing in the
limit h2→0, can be estimated as

b
h3

r
^duDveh2Du1h3Dv&5b

h3

r

]

]h2
^Dveh2Du1h3Dv&.

~46!

Using a theorem~see Frisch@7#, for example! that for the
random Gaussian processj ~see below!

^jF~j!&5 j̄2K ]F~j!

]j L , ~47!

we derive, in the limith2→0,

I p'bh3
2 ~Dv !2

r

]Z3

]h2
. ~48!

Substituting this into Eq.~25! and integrating overh2 gives,
in the limit h2→0,

]Z3

]r
1

Z3

r
1

h3

r

]Z3

]h3
2

gP

~Pr !1/3h3
2Z31V~h3!5G~h3!

~49!

whereg is undetermined parameter and an arbitrary funct

G~h3!5Z3 /r 1V~h3!,

with

2V~h3!5 limh2→0h3
2E Z~h2 ,h3 ,r !dh2

is chosen to satisfy a trivial constraintZ3(h350,r )51 and
the above mentioned universality.

This gives
-

e

-
n

c-

n

]Z3

]r
1

h3

r

]Z3

]h3
2

gP

~Pr !1/3h3
2Z350, ~50!

where Z35Z(h250,h3). This equation is invariant unde
h3→2h3 transformation. It is important that theO(h3

2)
contribution to Eq.~50! corresponds to the pressure term b
not from the forcing present in the original equation~25!.
Seeking a solution to this equation in a scaling form~we set
P51 for now! Z3(h3 ,r )5Z(h3r 1/3)[Z(X) gives

4X

3
ZX5gX2Z ~51!

and

Z5expS 3g

8
h3

2r 2/3D . ~52!

This generating function corresponds to the Gaussian
tribution of transverse velocity differencesP(Dv) with the
second-order structure function

S2
t ~r !5~Dv !25

3g

4
r 2/3 ~53!

Equation ~50! corresponds to a one-dimensional line
Langevin equation for ‘‘velocity field’’V5v/(Pr)1/3,

v r~x!52v~x!1f~x,t!, ~54!

wheret}tr 22/3P1/3, and the nonlocal Gaussian ‘‘universal
forcing f(x,t), generated by the nonlinearity of the origin
equation, is defined by the correlation function

f~k,t!f~k8,t8!}d~k1k8!d~t2t8!. ~55!

The generating function for the fieldV is

z5^eXV&.

Sincet}tr 22/3 andV}vr 21/3, this equation is strongly non
local. It becomes local, however in the wave-number spa
This will be discussed later.

Now we can attempt to justify relation~46!. According to
Eq. ~23!, and taking into account that thex axis is parallel to
the displacementr in the limit h2→0,

I p'h3~„]yp~0!2]y8p~r !…exp~h3Dv1h2Du!!,

where

]yp~0!2]y8p~r !5E ky~12eikxr !Fkx
2

k2 u~q!u~k2q!

1
ky

2

k2 v~q!v~k2q!1
kxky

k2 u~q!

3v~k2q!Gd2kd2q,

and the exponent is expressed simply as
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eh3Dv1h2Du5expFh3E ~12eiQxr !v~Q!d2Q

1h2E ~12eiQxr !u~Q!d2QG .
It will be come clear below that transverse velocity diffe
encesDv obey Gaussian statistics, and the longitudinal o
Du are very close to Gaussian. Then, substituting the ab
expressions intoI p and expanding the exponent we gener
an infinite series involving various products ofu(q)’ s and
v(q)’ s. In the case of the incompressible, statistically is
tropic Gaussian velocity field we are dealing with, the
products are split into pairs:

^v i~q!v j~Q!&}q28/3S d i j 2
qiqj

q2 D d~q1Q!.

The ky integration is carried over the interval2`,k,`,
and in the isotropic case we are dealing with the only n
zero terms are those involving even powers ofky . These
terms are generated by the expansion of

eh2Du.

However, beingO(h2), they disappear in the limith2→0.
Thus

I p5h3E d2kd2qky~12eikxr !
kxky

k2 K u~q!v~k

2q!expS h3E ~12eiQxr !v~Q!d2Q

1h2E ~12eiQxr !u~Q!d2QD L ,

where theO(h2) contribution to the exponent is temporari
kept to make the transformation

Dueh2Du5
]eh2Du

]h2

to Eq. ~46! possible. Only after that do we seth250. This
proves that the only contribution to the equation for the pr
ability density function comes from theO(DuDv) mixing
components, involved in the pressure gradients. This rela
justifies estimate~46!.

VI. LONGITUDINAL VELOCITY DIFFERENCES

The remarkable fact that in the limith2→0 all contribu-
tions to Eq.~25! contain]/]h2 enables a separation of th
variables: integrating the resulting equation overh2 gives the
closed equation forZ3(h3). The corresponding dynami
equation is linear, meaning that transverse velocity fluct
tions do not directly contribute to the energy transfer b
tween different scales. This effect is possible for an arbitr
value of h2 only in two dimensions, where theO„(d
22)(]/]h3)… enstrophy production term in Eq.~22!, not
containing]/]h2 , is equal to zero. This simplification, com
bined with the locality of the pressure-gradient effects,
lowed us to derive a closed-form expression forZ3 .
s
ve
e

-
e

-

-

n

-
-
y

l-

The role of pressure in the dynamics of transverse co
ponents of velocity field is mainly restricted to control of th
‘‘energy redistribution’’ necessary for generation of an is
tropic and incompressible velocity field. The longitudin
field dynamics are much more involved. The advecti
~pressure excluding! part of the nonlinearity tends to produc
large gradients of velocity field~‘‘shock generation’’ using
the Burgers equation phenomenology!, manifesting itself in
creation of a constant energy flux in the wave-number spa
Pressure is the only factor preventing shock formation.

Since we are interested in the longitudinal correlati
functions, we set h350. Then, defining S2

t 5((Dv)2)
'A2

t (Pr)2/3, and settingP51 the term in Eq.~25! can be
rewritten as

h2

r

]2Z

]h3
2 5

h2

r
^~Dv !2eh2Du&'

h2A2
t

r 1/3 Z21O~h2
2;h3

2;h2
2h3!.

~56!

The last relation is accurate since, substituting this into
~25!, differentiating once overh2 , and setting bothh35h2
50, gives

1

r

]

]r
rS22

A2
t

r 1/35
]I p~0,0!

]h2
. ~57!

SinceS2(r )5A2r 2/3, this equation gives

5

3
A22A2

t 5r 1/3
]I p~0,0!

]h2
, ~58!

which, according to Eq.~12! is exact since]I p(0,0)/]h2
50 ~see below!.

Let us consider some general properties of the pres
term I p in the limit h3→0. We have

I p'h2K S ]p~2!

]x2
2

]p~1!

]x1
Dexp~h2Du1h3Dv !L . ~59!

Expanding the exponent and recalling that for isotropic a
incompressible turbulenceDu5Dv50 andp(x)v i(x8)50,
we conclude that

I p'h2K S ]p~2!

]x2
2

]p~1!

]x1
D ~h2Du1h3Dv !21¯ L

5O~ah2
31bh2

2h31¯ !. ~60!

It is clear that relation~48!, derived above for the case o
Gaussian statistics, satisfied this general property of the fl
Thus whenh3→0, we approximate

I p'cr1/3h2
3Z1G, ~61!

wherec is an as yet undetermined constant, andG denotes
the contributions toI p , properly modifying numerical coef-
ficients in Eq.~25!. The presence of theO(h2

3) distinguishes
this equation from the one for the transverse PDF conside
in Sec. V. There the assumed role of pressure was limite
the mixing of various components of velocity field. That
why all we accounted for wasO(DvDu) contributions to
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pressure. Here, in addition, we also considerO(h2
3) contri-

butions, responsible for prevention of the shock formati
The resulting equation is

1

Pr3

]2

]h2]r
r 3Z22

11

5~Pr !1/3A2
t h2Z223h2

2Z2

2c~Pr !1/3h2
3Z250. ~62!

Differentiating Eq.~62! once overh2 , and settingh250,
givesA2

t 55/3A2 , in accord with the general relation~12! for
d52. The Laplace transform of Eq.~62! gives equation for
the probability densityP(Du,r ):

c~Pr !1/3PUUU23PUU1
1

Pr3

]

]r
r 3UP1

11A2
t

5~Pr !1/3 PU50.

~63!

Seeking a solution in a scaling form~the parameterc will be
determined below!,

P~U,r !5
1

r 1/3FS U

~Pr !1/3D , ~64!

we obtain, again for simplicity settingP51,

cFxxx23Fxx1S b2
x2

3 DFx1
8

3
xF50, ~65!

where b511/5A2
t 511/3A2 . All but one term in Eq.~65!

changes sign whenx→2x. TheO(Fxx) symmetry-breaking
contribution is necessary for the existence of the nonz
energy flux. Assuming for the time being, in accord w
numerical and physical experiments, that the flux is sm
@see relation~2!#, we first neglect theO(Fxx) contribution.
The equation is

cFxxx
0 1S b2

x2

3 DFx
01

8

3
xF050, ~66!

with solution

F05ex2/2A2, ~67!

wherec5A2
2/3. If A2@1, then the neglectedFxx5O(1/A2)

term is numerically small. This means that the odd-or
moments, computed with the PDF, which is a solution of E
~65!, must be small in a sense defined by relation~2!. At the
same time the even-order moments must be close to
gaussian ones.

An analytic solution of Eq.~65! is difficult. However, one
can evaluate all momentsSn /r n/35An in terms of only one
parameterA2 :

Sn1152
3

n110S 2
A2

2

3
n~n21!~n22!Sn2323n~n

21!Sn222
11

3
A2nSn21D . ~68!

This relation givesA150, A35 3
2 , A453, A5512.43A2 ,

A6515A2
3136, A7537.71A4 , etc. These numbers can b
.

ro

ll

r
.

he

tested in numerical experiments. The one-loop renormali
perturbation expansions giveA2'10, while numerical simu-
lations are consistent withA2'12. Keeping these numbers i
mind, it follows from Eq.~68! that accurate measurements
the odd-order moments are the only way to verify predictio
of the present theory. The deviations of the even-order m
ments from the Gaussian ones are too small to be detecte
both physical and numerical experiments. It can be chec
that the ratios

s2n115
S2n11

S2n
~2n11!/2n

vary in the interval 0.04–0.1 for 2,n,10 andA2'10. With
A2'12, these numbers are even smaller.

VII. SUMMARY AND CONCLUSIONS

The experimentally observed Gaussian or very nea
Gaussian statistics of transverse velocity differences was
tremely puzzling since, at first glance, this is incompatib
with the nontrivial Kolmogorov scaling resulting from th
strong nonlinearity of the problem. The most surprising a
interesting result, derived in this paper, is that due to
symmetries of the problem the equation, governing the pr
ability density function of transverse velocity difference
has one derivative less than the one corresponding to
longitudinal differences. This means, in turn, that transve
components of the velocity field are governed by a nonlo
linear equation, driven by a universal, nonlocal, solutio
dependent Gaussian force. This reduction, resembling the
persymmetry effects in field theory, is surprising if not m
raculous. The nonlocal equation in physical space, obtai
above, corresponds to the Langevin equation in the Fou
space:

v t~k!1cnP1/3k2/3v5 f R~k,t !, ~69!

wherecv is an amplitude of ‘‘effective’’~turbulent! viscos-
ity, and

f R~k,t ! f R~k8,t8!}k21d~k1k8!d~ t2t8! ~70!

is the force covariance used in Refs.@9#, @10# in the renor-
malization group treatments of fluid turbulence.

The irrelevance of the dissipation terms in tw
dimensional turbulence makes the problem much more t
table than its three-dimensional counterpart. Still, in order
close equations for the probability density of the veloc
field, one needs an expression for the pressure contributi
The situation is even more simplified by the fact that t
large-scale-dominated single-point variables are time dep
dent and must decouple from the steady-state small-scale
namics. That is why one can use an assumption about
locality of the pressure gradient effects, leaving only t
mixing O(DuDv) contributions to the two-point pressur
difference. It can be tested by a mere accounting that
other contributions to the expression forI p involve one or
moreU1’s and lead to a time-dependent result. This mea
that they must disappear from the steady-state equations~25!
and ~45!. The range of possible models for pressure is n
rowed by a few dynamic and kinematic constraints, and
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the fact that the resulting equation must give a non-nega
solution everywhere. A simple calculation shows that
model for the pressure gradient terms, introduced in this
per, is consistent with the derived Gaussian statistics.

The equations for PDF is of longitudinal velocity diffe
ences do not correspond to linear dynamics. Still, the deri
solution only slightly deviates from Gaussian. This is po
sible due to the relative smallness of the energy flux in t
dimensions.

The results presented here seem to agree with both ph
cal and numerical experiments. The nearly Gaussian st
tics obtained above justifies various one-loop renormali
perturbation expansions givingA2'10– 12. Using this num-
ber we realize that it is extremely difficult to detect dev
tions from Gaussian statistics experimentally. Still, some fi
details of the present theory, related to the pressure grad
velocity correlation functions can be tested numerically.
addition, measurements of a few odd-order moments
shed some light on the validity of the present theory.

The equations and solution presented here leave one q
tion unanswered: are these the solutions or not? Our exp
ence with the Burgers and two-dimensional Navier-Sto
equations teach us that it is very difficult to find a se
consistent closure leading to the positive solution for
PDF’s. Stretching this statement a bit, we feel that a clos
satisfying dynamic constraints and leading to a plausable
lution, has a good chance to be correct.

The absence of intermittency in a steady-state develop
inertial range, discovered in two-dimensional turbulen
@2–4# seems to be a general phenomenon observed in d
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wave turbulence@11# and in a one-dimensional model of
passive scalar advected by a compressible velocity field@12#.
These observations support our understanding of inter
tency as a phenomenon originating from the interaction
large- and small-scale velocity fluctuations. In a develop
statistically steady inertial range, where the integral scal
strongly time dependent, these interactions must be smal
the small-scale steady state to exist. At later stages finite
effects, destroying the time independence of the small-s
dynamics, lead to formation of coherent structures and n
dynamic phenomena which are beyond the scope of
present theory.

Note added in proof.In a recent paper Bofetta, Celatt
and Vergassola@13# reported the results of very accura
numerical simulations of two-dimensional turbulence gen
ated by the random force. The computed odd-order mom
S5 andS7 were very close to the ones obtained in the pres
study from relation~68!. No deviations from the Gaussia
statistics of transverse velocity differences were detec
Moreover, the measured PDF of the longitudinal differenc
could be represented as a sum:P(Du)5Ps(Du)1Pa(Du)
where Ps(x)5Ps(2x) and Pa(x)52Pa(2x) with Ps(x)
indistinguishable from the Gaussian. The same feature
be derived from Eq.~68!.
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